Fundamentals of Telecommunications – (block C)

Fundamentals of Telecommunications – (block C)
3 YEAR 2 semester 9 CREDITS – 6 CREDITS* (2022-23)


Antonio Saitto

Francecsco Zampognaro

2019-20 (9 cfu)
2020-21 (9 cfu)
2021-22 (9cfu)


2022-23 (6 cfu)
  Code: 8039512

*the number of credits depends on your study plan. The Study plans A.Y. 22-23 changed in this way: FDC 6 CREDITS


LEARNING OUTCOMES: To provide basic knowledge on deterministic analogic signals, linear time invariant systems, analogic random processes, noise and signal to noise ratio, analogic modulation concepts. To allow practical experience on Matlab.
KNOWLEDGE AND UNDERSTANDING: Obtain capability to apply the acquired knowledge in the field of elementary analogue signal processing to approach and solve problems concerning more complex processing in the field of digital signals. Obtain capabilities to understand problem to approach the job in professional manner.
APPLYING KNOWLEDGE AND UNDERSTANDING: Obtain and demonstrate to understand problems of university degree of complexity both during the class and on books of equivalent level.
MAKING JUDGEMENTS: Acquire the capability to collect and analyse data on the analogue signal processing to carry out and express opinion autonomously and independently.
COMMUNICATION SKILLS: Acquire capability to explain what learnt to both skilled and not skilled people.
LEARNING SKILLS: Acquire such a capability to learn to be able to approach the following courses with high degree of autonomy.


Deterministic continuous-time signals
Introduction, telecommunication systems and services, definition of signals, ideal transmission of signals, time domain signals, complex notation, basic operations on signals, classification, duration, Dirac impulse, energy and power. Affinity: cross correlation and autocorrelation between energy and power signals. Time domain series representation of signals: Fourier series for periodic signals, representation with series of orthogonal functions,
Fourier series for time limited signals, representation with samples interpolation. Representation in the signal domain, Gram- Schmidt orthogonalization. Linear transformation: Fourier transform. Examples of Fourier transform, affinity for frequency represented signals, energy and power spectrum, sampling theorem in time and frequency domain. Representation in the complex domain: analytic signal and complex envelope. Basics of source signals: analogue and digital signals. Multilevel source signals, binary signals, synchronous and asynchronous signals. Linear transformation between signals, linear and time invariant transformations in one port systems and in two port systems. Ideal two port system, perfect two port systems. Fundamentals of transmission, ideal transmission, perfect transmission systems, perfect linear channels, time continuous linear processing, filters, processing and reverse processing of step signals, total processing. Multiplexing, analogue digital conversion, basics on channel coding, basics on modulation.
Time continuous random variables and stochastic processes. Random variables theory, probability distribution and density functions, conditional probability distribution. Moments, characteristic and generating function of a random variable. Functions of random variables, distribution and density functions computation, sequences of random variables, transformation of random variables, independence of random variables. Expected value, variance and covariance. Conditional density functions, complex random variables. Stochastic processes, generalities, properties and moments. Classification, spectral theory, transformation of stochastic processes. The Gaussian process. Stationary processes, cross correlation, sum of processes and complex process, ciclostationary processes of first and second order, processes represented by the complex envelope, stationary process not in base band, processes represented in time series, real processes with random factors, processes sampled in base band, complex processes with random factors. Gaussian processes: noise, Gaussian stationary noise not in base band, white Gaussian noise in the signal space. Markov processes: properties, continuous and discrete time.
Imperfect transmission Imperfect connection. Undesirable additive affect at the output. Imperfect transmission over linear time variant channel. Imperfect transmission over linear time invariant channel. Imperfect transmission over non linear channel. Imperfect transmission with independent disturbs. Generalities on independent disturbs. Reduction of effects from independent disturbs. System additive Gaussian noise. Power analysis of a transmission system. Single two port system. Power analysis of noisy linear two port system chain. Noisy linear two port systems. Receiver sensitivity.
Signals utilized in transmission systems Harmonic signals modulation. Transmitter and receiver general schemes for modulated harmonic signals. Analogue harmonic modulation. Amplitude modulations (AM). Angle modulations: phase (PM) and frequency (FM). Performance analysis of harmonic modulation systems with analogue signals. Performance of AM systems. Signal to noise ratio for PM and FM systems.
Signals lab Introduction to Matlab and its use to graphically represent signals. Execution of operations among signals (also periodic). Study of signal properties (energy and power) and correlations.

Networking and Internet – (block C)

Networking and Internet – (block C)
3 YEAR 2 semester 9 CREDITS
Prof. Luca Chiaraviglio 2019-20
  Code: 8039511


LEARNING OUTCOMES: Understand and master the architecture of the Internet.

KNOWLEDGE AND UNDERSTANDING: Understanding of the Internet architecture to: i) learn the economic, technological, historical and research pillars that stimulated the Internet growth, ii) acquire skills about the management of fixed, WiFi and cellular networks, iii) touch through a ground-truth approach about the relationship between security aspects and networking.

APPLYING KNOWLEDGE AND UNDERSTANDING: Practical aspects, such as: network dimensioning problems, performance evaluation, configuration of devices at application and networking levels.

MAKING JUDGEMENTS: The students will learn the building blocks of the current Internet. The students will also understand the current limitations and the possible future research topics.

COMMUNICATION SKILLS: The student will improve its communications skills thanks to the oral examination. Moreover, the adoption of laboratory experiences allows improving the team working skills to solve complex problems.

LEARNING SKILLS: The students will improve its learning skills, thanks to a step by step approach, in which the laboratory experiences support and strengthen the concepts detailed during the lessons. Moreover, the classroom proposes different practical research topics, which can be used as material for further investigations of Bachelor thesis.


ECxopree rTimopeinctsal Part with Netkit
– Introduction to the Internet
– Application Layer (HTTP, DHCP, DNS, email)
– Transport Layer (TCP, UDP)
– Network Layer (RIP, OSPF, BGP, SDN, IP, ICMP)
– Link Layer

Additional Topics
– Wireless and Mobile Networks (WiFi, 2G, 3G, 4G)
– Multimedia Networking (Streaming)
– Security (principles of criptography, SSL, WEP, secured email, certification autorithies)

Digital Signal Processing – (block C-D)

Digital Signal Processing – (block C-D)
3 YEAR 2 semester 6 CREDITS* – 9 CREDITS (22-23)
Prof. Marina Ruggieri 2019-20


Tommaso Rossi (1cfu)

2020-21 and 2021-22  (6cfu)
2022-23 (9cfu)

2023-24 (9cfu)

Code: 8039514

from Internet Engineering

*the number of credits depends on your study plan. The Study plans A.Y. 22-23 changed in this way: DSP 9 CREDITS


LEARNING OUTCOMES: The course aims at providing to the students the theoretical and practical tools for the development of design capabilities and implementation awareness of Digital Signal Processing (DSP) systems and applications.

KNOWLEDGE AND UNDERSTANDING: Students are envisaged to understand the DSP theoretical, design and algorithm elements and to be able to apply them in design exercises.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students are envisaged to apply broadly and, if applicable, to personalize the design techniques and algorithm approaches taught during the lessons.

MAKING JUDGEMENTS: Students are envisaged to provide a reasoned description of the design and algorithm techniques and tools, with proper integrations and links.

COMMUNICATION SKILLS: Students are envisaged to describe analytically the theoretical elements and to provide a description of the design techniques and the algorithm steps, also providing eventual examples.

LEARNING SKILLS: Students are envisaged to deal with design tools and manuals. The correlation of topics is important, particularly when design trade-offs are concerned.


PART 1- Discrete-time signals and systems; representation in the time domain; sampling process; Discrete-time Fourier transform (DTFT); Z-transform; Discrete Time Fourier Series (DTFS).
PART 2 – Processing algorithms: introduction to processing; Discrete Fourier Transform (DFT); finite and long processing; DFT-based Processing; Fast Fourier Transform (FFT); processing with FFT.
PART 3 – Filter Design: introduction to digital filters: FIR and IIR classification; structures, design and implementation of IIR and FIR filters; analysis of finite word length effects; DSP system design and applications; VLAB and applications (Dr. Tommaso Rossi) with design examples and applications of IIR and FIR filters, Matlab-based lab and exercises (optional).

VLSI Circuit and System Design – (block B)

VLSI Circuit and System Design – (block B)
3 YEAR 2 semester 9 CREDITS
Prof. Marco Re 2019-20 to 2020-21

Luca DI NUNZIO (5 cfu) –

Vittorio MELINI (2 cfu)

Sergio SPANO’ (2 cfu)

from 2021-22

Code: 8039166

from Mechatronics Engineering


It is strictly suggested to take the “Digital Electronics” exam before attending this course. You can contact Prof. Luca DI NUNZIO for any doubts regarding the topic.



The VLSI CIRCUIT AND SYSTEM DESIGN course aims to teach the basic of combinational and sequential circuits that represent the basic blocks of any modern digital system. In addition, the course will provide the basic concepts of the VHDL language. Moreover, the course aim is to teach the basic notions to study and design a microprocessor. The elements necessary for the analysis of the architecture of microprocessors and their peripherals are provided. The course also covers various types of buses, data synchronization and types of memories.


At the end of the course, the student will learn the basic concepts of combinational and sequential circuits that are the basis of any system and the basic concepts of the VHDL language useful for the design of digital systems. Moreover, the student will have acquired the fundamental concepts of microprocessor architecture and analyze all its peripherals.


Ability to analyze the characteristics of digital circuits with particular emphasis on timing and power consumption. Moreover, the student will be able to design the architecture of a microprocessor and the interconnections between its peripherals.


The student will understand and the acquired knowledge independently and critically, in order to be able to connect and integrate the various aspects related to the design of digital systems. Moreover, the student will be able to independently analyze the fundamental characteristics of a microprocessor and its peripherals.
COMMUNICATION SKILLS: The student must be able to communicate their knowledge acquired during the course in a clear, correct, and technical language.


Ability to critically approach a digital circuit design problem, know how to manage it, and find implementation solutions using the VHDL language. Moreover, the student will have acquired the ability to independently undertake further in-depth studies on topics related to the course program, and to use the knowledge and methodologies learned to face new problems.


Digital electronics basic concepts
Floating-point and fixed-point numeric representation formats
Combinatorial circuits: encoders, decoders, multiplexers
Sequential circuits: flip flops, latch registers, counters, memories
Introduction to VHDL: entity and architecture, levels of abstraction, HDL design flow, combinatorial and sequential processes, objects in VHDL test bench
Practical activities of circuit design in VHDL
Central unit
System registers
Address logic
System buses
Branching of instructions
Bus synchronization
RAM memories
ROM memories
Flash memories
CAM memories
Introduction to the IC Digital Design Phases
ASIC & FPGA Design flows and their differences
Static Time Analysis, how, why and when to use it
Analysis of the timing paths and delays calculation
Definitions of the timing checks and delay calculations
Set-Up and hold violations and methodologies to resolve them
Introduction to the Clock Domains Crossing (CDC) and the main methodologies to deal with it
Introduction to the Reset Domain Crossing (RDC) and the main methodologies to avoid the issue


Notes from lectures. Slides employed for lectures.

Ercegovac, Milos D.; Lang, Tom?s; Moreno, Jaime H
ISBN 10: 0471527998 / ISBN 13: 9780471527992

Static Timing Analysis for
Nanometer Designs
A Practical Approach
ISBN 978-0-387-93819-6 e-ISBN 978-0-387-93820-2