Manufacturing Technologies – (block A)

Manufacturing Technologies – (block A)
3 YEAR 2 semester 9 CREDITS
Prof. Fabrizio Quadrini since 2019-20

QUADRINI FABRIZIO (6/9 cfu)

LEANDRO IORIO (3/9 cfu)

2022-23
  Code: 8037968
SSD: ING-IND/16

LEARNING OUTCOMES:
Basic knowledge about manufacturing processes for metals.

KNOWLEDGE AND UNDERSTANDING:
Conventional technologies for metals are studied. In order to stimulate student’s knowledge, the interaction between material and tools is always highlighted. The student is able to analyse and evaluate any manufacturing process with a proper technical language.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Thanks to the interaction between frontal lessons and laboratory activities, the student is stimulated to have an own technical profile. He will be able to manage technologies with technical language and sketch capabilities.

MAKING JUDGEMENTS:
The student develops own skills and capabilities in describing transformation processes by taking example from the frontal lessons.

COMMUNICATION SKILLS:
Students are invited to describe technologies in a proper technical way and with an adequate technical speech.

LEARNING SKILLS:
Learning skills are continuously improved thanks to the applied methodology for technology description. This methodology can be translated to any other technological process. Capabilities increase because of the number of described technologies and their correlation. Examples from the industrial world and laboratory experiments crystallize the knowledge about new technologies.

SYLLABUS:

Materials structure and properties: structure of metals, crystals, thermal stresses, solid solution, material properties, mechanical behavior, testing, and manufacturing properties of materials, metal alloys: structure and strengthening by heat treatment

Manufacturing of metals: fundamental of metal-casting, metal-casting processes and equipment, bulk forming (rolling, forging, extrusion and drawing), sheet-metal forming, sintering, fundamentals of machining, cutting-tools, machining processes (turning, drilling, milling).

Joining processes and advanced machining: fusion-welding, solid-state welding, adhesive-bonding, fastening, rapid-prototyping processes and operations, additive manufacturing.

Laboratory lessons: mechanical tests, surface engineering, hardness of metals, microscopy.

Machine Design – (block A-D)

Machine Design – (block A-D)
3 YEAR 2 semester 9 CREDITS
Prof. Luciano Cantone since 2019-20
CANTONE LUCIANO 2022-23
  Code: 8037969
SSD: ING-IND/14

OBJECTIVES

LEARNING OUTCOMES: Designing mechanical components considering the need to save weight, material and energy while respecting safety, to promote the usefulness and social impact of the designed product.
KNOWLEDGE AND UNDERSTANDING: The design of mechanical systems; in particular, basic knowledge of the design methodologies of important machine components.
APPLYING KNOWLEDGE AND UNDERSTANDING: Knowing how to recognise, distinguish and use the main techniques and tools for the design of mechanical components.
MAKING JUDGEMENTS: Students must assume the missing data of a problem and be able to independently formulate basic hypotheses (such as that on safety coefficients) based on the operational and functional context of the system/component they have to design.
COMMUNICATION SKILLS: Transfer information, ideas and solutions to specialist and non-specialist interlocutors through intensive use of English terminology.
LEARNING SKILLS: Students, by learning the basics of design, acquire the tools to learn the necessary design techniques of systems/components not directly addressed during the course.

COURSE SYLLABUS

The first part of the course is addressed to the consolidation of basic knowledge to put the student in the right conditions to face a generic machine design problem: Mechanical Engineering design in Broad, Perspective, Load Analysis, Materials, Static Body Stresses, Elastic strain, Deflection, Stability (Eulerian buckling), Vibrations (beam Eigen-modes), Failure Theories, Safety Factors, Reliability, High cycles Fatigue, Low cycles Fatigue, Surface Damage, Contact and impact problems.

The second part will cover specific design activities: Threaded Fasteners and Power Screws, Rivets, Welding, Bonding, Springs, Lubrication and Sliding Bearings, Rolling-Element Bearings, Spur and Helical Gears, Shafts and Associated Parts. During the course, several design activities will be demonstrated by exercises and by real-life applications.

Kinematics and Dynamics of Mechanisms (last year 2020-21)

Kinematics and Dynamics of Mechanisms (last year 2020-21)
3 YEAR1 semester9 CREDITS
Prof. Marco Ceccarelli2019-20
CECCARELLI MARCO 2020-21
Code: 8037957
SSD: ING-IND/13

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, design of multi-body planar systems, and in particular some transmission organs in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning of technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning of technical terminology and procedures for the presentation of the performance of mechanisms

COURSE SYLLABUS

  • Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms, fundamentals of mechanism synthesis, trajectory generation; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions with gears, belts, brakes, and flywheels.

Digital Electronics

Digital Electronics
3 YEAR 1 semester 9 CREDITS
Prof. Marco Re

2019-20

to

2022-23

RE MARCO 2023-24
  Code: 8037956
SSD: ING-INF/01

OBJECTIVES

LEARNING OUTCOMES

This course aims at providing the fundamentals of DIGITAL ELECTRONICS. More in detail, it deals with the characterization and design of combinational circuits starting from gates. The target technology is CMOS. Starting from the study of the CMOS circuits and the implementation of memory cells the course will face the design and characterization of sequential circuits.

KNOWLEDGE AND UNDERSTANDING

The student will be able to analyze and design combinational and sequential circuits.
Starting from these blocks the student will be able to write a high-level description of a complex digital system based on a computational unit and a control unit.

APPLYING KNOWLEDGE AND UNDERSTANDING

The student will apply the knowledge and understanding developed to the analysis of practical problems. This would imply critical knowledge in terms of silicon real estate and speed for both combinational and sequential systems.
MAKING JUDGEMENTS: The student will have to prove his critical awareness with respect to the simplifying assumptions useful to describe and analyze combinational and sequential systems as well as his critical awareness of the correct order of magnitude of performance parameters while dealing or designing digital circuits.

COMMUNICATION SKILLS

The student will prove, mostly during the oral test, his capacity of describing the operation and functioning of digital systems.

LEARNING SKILLS

The student will get familiar with the schematization of practical problems, mostly during the development of his skills for the written test. This mainly concerns combinational systems and sequential systems

COURSE SYLLABUS

  • This course constitutes an introduction to the engineering of digital systems.
  • Starting with data representation in digital form, it goes on to provide students with the ability to design a circuit for a given algorithmic information processing task. For this purpose, Boolean functions and combinational design are covered, followed by sequential logic design through Finite State Machines. Moreover standard MSI blocks (sequential and combinational are illustrated) up the description of algorithmic state machines.
  • The student should be able to understand the structure of a complex digital system and able to design the architecture and the internal blocks of the system. In the course, a brief introduction to the electrical measurements for digital systems is given (oscilloscope, Logic State Analyzer, Pattern Generator).