## Fluid Machinery – (block A-D)

LEARNING OUTCOMES: This course aims at providing the fundamentals of fluid dynamics applied to fluid machines. More in detail, it deals with the fluid dynamics equations applied to energy-consuming and energy-producing machines, characterized by both axial and radial flows. It also deals with the understanding of systems connected to fluid machines.

KNOWLEDGE AND UNDERSTANDING: The student will be able to develop simple but useful calculations of fluid machines in terms of flow, work and power, along with solving practical problems of interest. The student will also learn the basics of the control of fluid machines with respect to the flow rate, work exchanged and power output or input The knowledge developed will help the student for both the design of fluid machines and of the systems connected to the machines.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply the knowledge and understanding developed to the analysis of practical problems. This would imply critical knowledge in terms of size and power output/input; the same thing will be done for the systems connected to the machine.

MAKING JUDGEMENTS: The student will have to prove his critical awareness with respect to the simplifying assumptions useful to describe and calculate fluid machines, as well as his critical awareness of the correct order of magnitude of performance parameters while dealing or designing fluid machines.

COMMUNICATION SKILLS: The student will prove, mostly during the oral test, his capacity of describing the operation and functioning of fluid machines, convening of the knowledge developed.

LEARNING SKILLS: The student will get familiar with the schematization of practical problems, mostly during the development of his skills for the written test. This mainly concerns fluid machines (e.g. wind turbines, steam turbines, hydraulic turbines, hydraulic pumps, gas compressors, etc) and the systems connected to the machines (e.g. hydraulic power plants, pumping systems, air distribution systems, etc).

DETAILED SYLLABUS

Introduction

Classification of machines. Turbines, compressors, volumetric, rotary machines and their applications to industrial practical cases. Analysis of performance: power, specific work, efficiency.

Basics of fluid mechanics

Material and spatial description of the flow field. Translation, deformation and rotation. Reynolds’ transport theorem. Principles of conservation and balance (mass, momentum, energy, entropy) in differential form. Mass, momentum, thermal and mechanical energy in stationary and rotating frames of reference.

Basics of fluid mechanics applied to turbomachinery

Integral balances in turbomachines (mass, momentum, moment of momentum, energy) and basic applications.
Gas dynamics equations, speed of sound, Mach number. Applications to nozzles in supersonic conditions, normal shock waves.

Velocity diagrams coupled to stator and rotor blades for energy producing and consuming machines. Moment of Momentum balance. Energy transfer and different expressions of the Euler work. Trothalpy, degree of reaction, utilization for a turbine.

Applications

Scaling and similitude: dimensionless parameters, specific speed and diameter, Cordier curve. Scaling and similitude for compressible flow machines.

Axial turbines: stage analysis, flow and loading coefficients, reaction ratio, special cases of 0 and 0.5 reaction ratio designs. Off-design operation and performance maps.

Axial compressors: stage analysis, flow and loading coefficients, reaction ratio. De Haller design criterion and its effect on blade design. Off-design operation and performance maps.

Centrifugal compressors: analysis of velocity diagrams, effect of blade shape on performance maps, stability and efficiency. Slip factor. Vaneless and vaned diffuser. Flow control (variable speed, IGV and throttling).

Centrifugal pumps operation into systems: definition of head and volumetric flow rate. Head-flow rate performance map and effects on velocity diagrams, blade design and efficiency. System head curves for simple and multi-branched open-ended and closed-circuit systems. Friction factor and expression of dimensional friction losses. Flow control by variable speed and throttling.

Cavitation: physical description; effects of system design on cavitation, Net Positive Suction Head, suction specific speed.

TEXTBOOKS AND MATERIAL

S. Korpela. Principles of Turbomachinery, Wiley 2019.

Karassik et al., Pump handbook, McGraw Hill.

Powerpoint slides and videos are available on the MS-team website.

## Kinematics and Dynamics of Mechanisms (last year 2020-21)

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, design of multi-body planar systems, and in particular some transmission organs in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning of technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning of technical terminology and procedures for the presentation of the performance of mechanisms

COURSE SYLLABUS

• Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms, fundamentals of mechanism synthesis, trajectory generation; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions with gears, belts, brakes, and flywheels.

## Digital Electronics

OBJECTIVES

LEARNING OUTCOMES

This course aims at providing the fundamentals of DIGITAL ELECTRONICS. More in detail, it deals with the characterization and design of combinational circuits starting from gates. The target technology is CMOS. Starting from the study of the CMOS circuits and the implementation of memory cells the course will face the design and characterization of sequential circuits.

KNOWLEDGE AND UNDERSTANDING

The student will be able to analyze and design combinational and sequential circuits.
Starting from these blocks the student will be able to write a high-level description of a complex digital system based on a computational unit and a control unit.

APPLYING KNOWLEDGE AND UNDERSTANDING

The student will apply the knowledge and understanding developed to the analysis of practical problems. This would imply critical knowledge in terms of silicon real estate and speed for both combinational and sequential systems.
MAKING JUDGEMENTS: The student will have to prove his critical awareness with respect to the simplifying assumptions useful to describe and analyze combinational and sequential systems as well as his critical awareness of the correct order of magnitude of performance parameters while dealing or designing digital circuits.

COMMUNICATION SKILLS

The student will prove, mostly during the oral test, his capacity of describing the operation and functioning of digital systems.

LEARNING SKILLS

The student will get familiar with the schematization of practical problems, mostly during the development of his skills for the written test. This mainly concerns combinational systems and sequential systems

COURSE SYLLABUS

• This course constitutes an introduction to the engineering of digital systems.
• Starting with data representation in digital form, it goes on to provide students with the ability to design a circuit for a given algorithmic information processing task. For this purpose, Boolean functions and combinational design are covered, followed by sequential logic design through Finite State Machines. Moreover standard MSI blocks (sequential and combinational are illustrated) up the description of algorithmic state machines.
• The student should be able to understand the structure of a complex digital system and able to design the architecture and the internal blocks of the system. In the course, a brief introduction to the electrical measurements for digital systems is given (oscilloscope, Logic State Analyzer, Pattern Generator).

## Physics II

OBJECTIVES

LEARNING OUTCOMES: Learning the basic elements of Electromagnetism and fundamental physical principles of quantum mechanics.

KNOWLEDGE AND UNDERSTANDING:
Knowledge of the basic principles of electromagnetism and quantum mechanics useful for the own field of study. Understanding of advanced books on the arguments treated during the course.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Capacity to develop autonomously basic conceptual ideas using arguments treated during the course.

MAKING JUDGEMENTS:
Capacity to evaluate autonomously ideas or project using the knowledge acquired in the course.

COMMUNICATION SKILLS:
Capacity to share informations and ideas on the basis of knwoledge acquired in the course.
Comprehension of specific problems and relative solutions proposed.

LEARNING SKILLS:
The knowledge acquired in the course must be of help for the student in future courses, improving the capacity of autonomous learning.

COURSE SYLLABUS

1) Electric Charge and Electric Field : Conductors, Insulators, and Induced Charges.
Coulomb’s Law. Electric Field and Electric Forces. Electric Field Lines. Charge and Electric Flux, Gauss’’ s Law. Charges on Conductors.
2) Electric Potential: Electric Potential Energy, Electric Potential, Equipotential Surfaces, Potential Gradient. Definition of electric dipole. Approximated formula for the electric potential of a dipole at large distances.
3) Capacitors and Capacitance. Capacitors in series and parallel configuration. Electrostatic Potential Energy of a Capacitor. Polarization in Dielectrics. Induced Dipoles. Alignment of Polar Molecules. Electric Field inside a dielectric material. Relative dielectric constant. Capacitors with dielectric materials.
4) Electric current, Vector current density J, Resistivity (ρ) and conductivity ( σ) of materials, Ohm’s law in vector and scalar form, Resistors and resistance, Microscopic theory of electric transport in metals (Drude model). Differences between thermal velocity and drift velocity of charge carriers. Thermal coefficient of resistivity for metal and semiconductors. Resistors in parallel. Kirchhoff current law and the conservation of charge. Resistors in series. Kirchhoff voltage law ( KVL) and the conservative nature of electric field. Resistor and capacitor in series. Charging a capacitor. Solving the equation for current and voltage in RC circuits, time constant.
5) Introduction to magnetism, historical notes. Magnetic Force on a moving charged particle in a Magnetic Field. Definition of the vector ( cross ) product. Vector product expressed by the formal determinant and calculated by Sarrus Rule. Thomson’s q/m experiment and the discovery of the electron. Magnetic force on a current carrying conductor. Local equation for the magnetic force, the second formula of Laplace. Introduction to current loops, the torque. Force and Torque on a current loop in presence of a constant magnetic field. The magnetic dipole moment. Torque in vector form. Stable and unstable equilibrium states. Equivalence between a magnetic dipole of a current loop and the dipole of a magnet. Potential energy of a dipole moment in a magnetic field. Force exerted on a magnetic dipole in a non-uniform magnetic field. Working principle of a dc motor. Generalization of a magnetic dipole to current loops with irregular area. Magnetic dipole of a coil consisting of n loops in series. The Hall effect.
6) Historical introduction to the Biot Savart Laplace equation. Electric current as sources of magnetic field, the current element. The Biot Savat Laplace (BSL) equation. BSL equation for an infinitely long wire with an electric current flow. The flux of the magnetic field B. The Gauss Law for the magnetic field. Forces acting on wires with electric current flow. Magnetic field on the axis of a current loop and a coil. Ampere Circuital Law. Definition of a Solenoid. Magnetic field from a long cylindrical conductor. Magnetic field from a toroidal coil. The Bohr magneton. Magnetic materials. Paramagnetism, Diamagnetism, Ferromagnetism.
7) Magnetic induction experiments. Faraday Law. Lenz Law. Flux swept by a coil and Motional Electromotive Force. Induced Electric Field. Displacement current. The four Maxwell equations in integral form. Symmetry of the Maxwell equation. Self induction. Inductors. Inductor as circuit element.Self inductance of a coil. Magnetic Field Energy. The R-L circuit. The LC circuit. The RLC series circuit.
8) The electromagnetic waves. Derivation of EM waves from Maxwell Equation. The electromagnetic spectrum. Electromagnetic energy flow and the Poynting vector. Energy in a sinusoidal wave. Electromagnetic momentum flow. Standing Electromagnetic waves.
9) Light waves behaving as particles. The photocurrent experiment. Threshold frequency and Stopping Potential. Einstein’s explanation of Light absorbed as “Photons”. Light Emitted as Photons: X-Ray Production. Light Scattered as Photons: Compton Scattering.
10) Interference and diffraction of waves. The Wave Particle Duality. De Broglie wavelength. The x-ray diffraction from a crystal lattice, the Bragg’s Law. The electron diffraction experiment of Davisson and Germer. The double slit experiment with electrons. Waves in one dimension: Particle Waves, the one-dimensional Schrödinger equation. Physical interpretation of the Wave Function. Wave Packets. Uncertainty principle. Particle in a box. Energy-levels and wave functions for a particle in a box. The tunneling effect.

## Mathematical Analysis II

OBJECTIVES

LEARNING OUTCOMES:
One learns power series, differential calculus of several variables, line integral, multiple integral and surface and volume integral. One obtains the ability to calculate partial derivatives of elementary and composed functions, calculate various integrals and apply theorems of Green, Gauss and Stokes to facilitate the computations.

KNOWLEDGE AND UNDERSTANDING:
To know the definitions of basic conepts (convergence of series, partial derivatives, extremal points, multiple integral, line integal, surface integral and volume integral) and apply various theorems to execute concrete computations.

APPLYING KNOWLEDGE AND UNDERSTANDING:
To identify the theorems and techniques to apply to the given problems and execute computations correctly.

MAKING JUDGEMENTS:
To understand mathematical concepts for the given problems and to divide them into smaller problems that can be solved with the knowledge obtained during the course.

COMMUNICATION SKILLS:
To frame the problems in the obtained concepts, express the logic and general facts that are used during the computations.LEARNING SKILLS:

To know precisely basic mathematical concepts and apply them to some simple examples in physics.

COURSE SYLLABUS

• Sequences and series of functions, Taylor series
• Differential calculus of scalar and vector fields
• Applications of differential calculus, extremal points
• Basic differential equations
• Line integrals
• Multiple integrals
• Surface integrals, Gauss and Stokes theorems