Energy Systems – (block A-D)

Energy Systems – (block A-D)
3 YEAR 2 semester 6 CREDITS
Prof. Michele Manno 2019-20 to 2023-24
MANNO MICHELE 2023-24
 

michele.manno@uniroma2.it

Code: 8037964
SSD: ING-IND/09

OBJECTIVES

LEARNING OUTCOMES:
After completing the course, the students should acquire a good knowledge of the fundamental operating principles of energy conversion systems, and they should be able to analyze the layout and evaluate the performance and efficiency of thermal and hydroelectric power plants.

KNOWLEDGE AND UNDERSTANDING:
Students are expected to understand the fundamental principles underlying the operation of energy conversion systems.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Students are expected to be able to assess the performance of energy conversion systems.

MAKING JUDGEMENTS:
Students are expected to be able to choose the most suitable energy conversion system and its operating parameters, given a particular application.

COMMUNICATION SKILLS:
Students are expected to be able to describe and illustrate the operating principles of energy conversion systems.

LEARNING SKILLS:
Students are expected to be able to read and fully understand technical literature related to energy conversion systems.

COURSE SYLLABUS

Students will be introduced to the main principles of energy conversion systems, with particular reference to steam and gas turbine power plants, combined cycle power plants,
hydroelectric power generation.

More specifically, the following topics will be addressed:

Introduction

  • Review of fluid properties and equations of state.
  • Analysis of combustion processes.
  • Analysis of energy conversion systems based on 1st and 2nd Laws of Thermodynamics.
  • Thermodynamic cycles: definition of network output and thermal efficiency; external and internal irreversibilities; efficiency factors.

Steam power plants

  • Analysis of ideal and real thermodynamic cycles.
  • Choice of operating parameters.
  • Techniques to improve plant efficiency: steam reheating, regenerative feed heating.
  • Plant layouts, applications.

Gas turbine power plants

  • Analysis of ideal and real thermodynamic cycles.
  • Choice of operating parameters and techniques to improve performance: regenerative heat exchanger, reheaters, intercoolers.
  • Layout of heavy-duty and aeroderivative turbines, applications.

Combined cycle power plants

  • Analysis of “topping” (gas turbine) and “bottoming” sections, definition of recovery efficiency.
  • Thermodynamic optimization of bottoming sections with variable temperature heat input.
  • Plant layout, applications.

Hydroelectric power generation

  • Hydraulic turbines: classification, operating parameters, performance characteristics.
  • Hydroelectric plant classification and layouts, applications.

Fluid Machinery – (block A-D)

Fluid Machinery – (block A-D)
3 YEAR 1 semester 6 CREDITS
Prof. Vincenzo Mulone e
Roberto Verzicco
since 2019-20
VERZICCO ROBERTO
MULONE VINCENZO
2022-23
  Code: 8037967
SSD: ING-IND/08

LEARNING OUTCOMES: This course aims at providing the fundamentals of fluid dynamics applied to fluid machines. More in detail, it deals with the fluid dynamics equations applied to energy-consuming and energy-producing machines, characterized by both axial and radial flows. It also deals with the understanding of systems connected to fluid machines.

KNOWLEDGE AND UNDERSTANDING: The student will be able to develop simple but useful calculations of fluid machines in terms of flow, work and power, along with solving practical problems of interest. The student will also learn the basics of the control of fluid machines with respect to the flow rate, work exchanged and power output or input The knowledge developed will help the student for both the design of fluid machines and of the systems connected to the machines.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply the knowledge and understanding developed to the analysis of practical problems. This would imply critical knowledge in terms of size and power output/input; the same thing will be done for the systems connected to the machine.

MAKING JUDGEMENTS: The student will have to prove his critical awareness with respect to the simplifying assumptions useful to describe and calculate fluid machines, as well as his critical awareness of the correct order of magnitude of performance parameters while dealing or designing fluid machines.

COMMUNICATION SKILLS: The student will prove, mostly during the oral test, his capacity of describing the operation and functioning of fluid machines, convening of the knowledge developed.

LEARNING SKILLS: The student will get familiar with the schematization of practical problems, mostly during the development of his skills for the written test. This mainly concerns fluid machines (e.g. wind turbines, steam turbines, hydraulic turbines, hydraulic pumps, gas compressors, etc) and the systems connected to the machines (e.g. hydraulic power plants, pumping systems, air distribution systems, etc).

DETAILED SYLLABUS  

Introduction 

Classification of machines. Turbines, compressors, volumetric, rotary machines and their applications to industrial practical cases. Analysis of performance: power, specific work, efficiency.

Basics of fluid mechanics 

Material and spatial description of the flow field. Translation, deformation and rotation. Reynolds’ transport theorem. Principles of conservation and balance (mass, momentum, energy, entropy) in differential form. Mass, momentum, thermal and mechanical energy in stationary and rotating frames of reference. 

Basics of fluid mechanics applied to turbomachinery 

Integral balances in turbomachines (mass, momentum, moment of momentum, energy) and basic applications. 
Gas dynamics equations, speed of sound, Mach number. Applications to nozzles in supersonic conditions, normal shock waves. 

Velocity diagrams coupled to stator and rotor blades for energy producing and consuming machines. Moment of Momentum balance. Energy transfer and different expressions of the Euler work. Trothalpy, degree of reaction, utilization for a turbine. 

Applications 

Scaling and similitude: dimensionless parameters, specific speed and diameter, Cordier curve. Scaling and similitude for compressible flow machines. 

Axial turbines: stage analysis, flow and loading coefficients, reaction ratio, special cases of 0 and 0.5 reaction ratio designs. Off-design operation and performance maps. 

Axial compressors: stage analysis, flow and loading coefficients, reaction ratio. De Haller design criterion and its effect on blade design. Off-design operation and performance maps. 

Centrifugal compressors: analysis of velocity diagrams, effect of blade shape on performance maps, stability and efficiency. Slip factor. Vaneless and vaned diffuser. Flow control (variable speed, IGV and throttling). 

Centrifugal pumps operation into systems: definition of head and volumetric flow rate. Head-flow rate performance map and effects on velocity diagrams, blade design and efficiency. System head curves for simple and multi-branched open-ended and closed-circuit systems. Friction factor and expression of dimensional friction losses. Flow control by variable speed and throttling.  

Cavitation: physical description; effects of system design on cavitation, Net Positive Suction Head, suction specific speed.

TEXTBOOKS AND MATERIAL 

S. Korpela. Principles of Turbomachinery, Wiley 2019. 

Karassik et al., Pump handbook, McGraw Hill. 

Powerpoint slides and videos are available on the MS-team website. 

Kinematics and Dynamics of Mechanisms (last year 2020-21)

Kinematics and Dynamics of Mechanisms (last year 2020-21)
3 YEAR1 semester9 CREDITS
Prof. Marco Ceccarelli2019-20
CECCARELLI MARCO 2020-21
Code: 8037957
SSD: ING-IND/13

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, design of multi-body planar systems, and in particular some transmission organs in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning of technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning of technical terminology and procedures for the presentation of the performance of mechanisms

COURSE SYLLABUS

  • Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms, fundamentals of mechanism synthesis, trajectory generation; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions with gears, belts, brakes, and flywheels.