Energy Systems – (block A-D)

3 YEAR 2 semester 6 CREDITS
Prof. Michele Manno 2019-20 to 2023-24
MANNO MICHELE 2023-24
 

michele.manno@uniroma2.it

Code: 8037964
SSD: ING-IND/09

OBJECTIVES

LEARNING OUTCOMES:
After completing the course, the students should acquire a good knowledge of the fundamental operating principles of energy conversion systems, and they should be able to analyze the layout and evaluate the performance and efficiency of thermal and hydroelectric power plants.

KNOWLEDGE AND UNDERSTANDING:
Students are expected to understand the fundamental principles underlying the operation of energy conversion systems.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Students are expected to be able to assess the performance of energy conversion systems.

MAKING JUDGEMENTS:
Students are expected to be able to choose the most suitable energy conversion system and its operating parameters, given a particular application.

COMMUNICATION SKILLS:
Students are expected to be able to describe and illustrate the operating principles of energy conversion systems.

LEARNING SKILLS:
Students are expected to be able to read and fully understand technical literature related to energy conversion systems.

COURSE SYLLABUS

Students will be introduced to the main principles of energy conversion systems, with particular reference to steam and gas turbine power plants, combined cycle power plants,
hydroelectric power generation.

More specifically, the following topics will be addressed:

Introduction

  • Review of fluid properties and equations of state.
  • Analysis of combustion processes.
  • Analysis of energy conversion systems based on 1st and 2nd Laws of Thermodynamics.
  • Thermodynamic cycles: definition of network output and thermal efficiency; external and internal irreversibilities; efficiency factors.

Steam power plants

  • Analysis of ideal and real thermodynamic cycles.
  • Choice of operating parameters.
  • Techniques to improve plant efficiency: steam reheating, regenerative feed heating.
  • Plant layouts, applications.

Gas turbine power plants

  • Analysis of ideal and real thermodynamic cycles.
  • Choice of operating parameters and techniques to improve performance: regenerative heat exchanger, reheaters, intercoolers.
  • Layout of heavy-duty and aeroderivative turbines, applications.

Combined cycle power plants

  • Analysis of “topping” (gas turbine) and “bottoming” sections, definition of recovery efficiency.
  • Thermodynamic optimization of bottoming sections with variable temperature heat input.
  • Plant layout, applications.

Hydroelectric power generation

  • Hydraulic turbines: classification, operating parameters, performance characteristics.
  • Hydroelectric plant classification and layouts, applications.